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IMoxrpynma H xoHeuHo# rpynmbel G Has3bIBaeTCs S -yCIOBHO HEPECTAHOBOYHO IOTPYKEHHOH (mu Ooiee KpaTko, s - ¢ -Tie-

PECTaHOBOYHO MOTPYXeHHOH) B G ecnu Juis Kaxaoro p € 7(H), Kaxnas CHUIOBCKas p -MOArpynna rpynmnsl /H  sBisercs

CUTJIOBCKOH p -TIOArPYNIIONW HEKOTOPOW S -YCIIOBHO NEPECTAHOBOYHOM moirpynmnoil rpymmnsl G. B naHHON paboTe MbI MC-

MOJIb3YET HEKOTOPBIE § - ¢ -IIEPECTAHOBOYHO IIOIPYKEHHbIE IOJTPYNIBI [UIsl M3y4EeHHs] CTPYKTYpBhl HEKOTOPBIX KOHEUYHBIX

rpym. O6006I1al0TCst HEKOTOPBIE H3BECTHBIE PE3YIIBTAThI.

Knrouegwie cnosa: xoneunas epynna, S -yclo6HO NepecmaHo80yHO NOSPYICEHHA nodepynna, popmayus, nodepynna Cunoea,

MakcumaibHas nodzpynna.

A subgroup H of a finite group G is said to be s -conditionally permutably embedded (or in brevity, s - ¢ -permutably em-

bedded) in G if for each p e x(H), every Sylow p -subgroup of H is a Sylow p -subgroup of some s -conditionally per-

mutable subgroup of G. In this paper, we use some s - ¢ -permutably embedded subgroups to study the structure of some

groups. Some known results are generalized.

Keywords: finite group, s -conditionally permutably embedded subgroup, formation, Sylow subgroup, maximal subgroup.

Introduction

Throughout this paper, all groups considered
are finite and G denotes a finite group. The termi-
nology and notations are standard, as in [1] and [2].

Let 4 and B be subgroups of G. A4 is said to
be permutable with B if A4B=BA. If A is permu-
table with all subgroups of G, then A4 is said to be
a permutable subgroup [1] (or quasinormal subgroup
[3]) of G. The permutable subgroups have many
interesting properties. For example, Ore [3] proved
that every permutable subgroup of a finite group is
subnormal. It6 and Szép [4] proved that for every
permutable subgroup / of a finite group G, H/H,

is nilpotent.

However, in general, two subgroups A and T
of G may not be permutable in G but G maybe con-
tain an element x such that H7* =T7"H. Based on
the observations, Guo, Shum and Skiba introduced
the concept of conditionally permutable subgroup
(in more general, the concept of X -permutable sub-
group) [5]-[7]: let X be a non-empty subset of G.
Then a subgroup 4 of G is said to be conditionally
permutable ( X -permutable) in G if for every sub-
group T of G, there exists some xeG (xe X
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respectively) such that AT* =T7"4. By using the
conditionally permutable subgroups and X -per-
mutable subgroups, authors have obtained some
new elegant results on the structure of groups (cf.
[51-(8D.

By considering some local conditionally per-
mutable subgroups, Huang and Guo [9] introduced
the concept of s-conditionally permutable sub-
group: a subgroup H of G is said to be s-
conditionally permutable in G if, for every Sylow
subgroup 7 of G, there exists some xe€ G such
that HT* =T"H . By Sylow’s theorem, we see that
a subgroup H of G is s-conditionally permutable
in G if and only if for every p € 7(G), there exists
a Sylow p-subgroup 7 such that HT =TH . As a

development of s-conditionally permutable sub-
groups, Chen and Guo [10] introduced the concept
of s - ¢ -permutably embedded subgroups:

Definition 0.1 [10, Definition 1.1]. 4 subgroup
H of G is said to be s-conditionally permutably em-
bedded (or in brevity, s-c-permutably embedded) in
G if every Sylow subgroup of H is a Sylow subgroup
of some s-conditionally permutable subgroup of G.
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Clearly, all permutable subgroups, s-permu-
table subgroups and s-conditionally permutable
subgroups are s - ¢ -permutably embedded. But the
converse is not true in general (see, for example,
Example 1-2 in [10]).

The purpose of this paper is to go further into
the influence of s -c-permutably embedded sub-
groups on the structure of finite groups. Some new
results are obtained and some known results are
generalized.

1 Preliminary results

In this section, we give the related concepts
and some basic results which are useful in the
sequel.

Lemma 1.1 [10, Lemma 2.2]. Suppose that G
is a group, KG and H < G. Then:

() If H is s-c-permutably embedded in G,
then HK/K is s -c-permutably embedded in G/K.

(2) If K<H and HI/K is s-c-permutably
embedded in G/K, then H is s-c-permutably
embedded in G.

(3) If HK/K is s -c-permutably embedded in
G/K and (|H|,|K|)=1, then H is s-c-permu-
tably embedded in G.

(4) If H is s-c-permutably embedded in G,
then HNK is s-c-permutably embedded in K.

Lemma 1.2 [11, Lemma 3.1]. Let N and L be
normal subgroups in G such that P/L is a Sylow
p -subgroup of NL/L and M/L is a maximal sub-
group of P/L. If P, is a Sylow p-subgroup of
PN, then P, is a Sylow p -subgroup of N such
that D =M NN NP, is a maximal subgroup of P,
and M = LD.

Lemma 1.3 [12, Lemma 4.1]. Let p be a
prime dividing the order of G. Suppose that
(Gl,p=1D) =1 and the order of G is not divisible
by p’ and G is A,-free. Then G is p -nilpotent.

Lemma 1.4 [2, Theorem 1.8.17]. Let N be a
non-trivial normal subgroup of G. If N N ®(G) =1,
then the Fitting subgroup F(N) of N is the direct
product of minimal normal subgroups of G which
are contained in F(N).

Lemma 1.5 [13, III, Lemma 3.3].

1) If NG, ULG and N<D(U), then N<D(G).

i) If M<G, then ®(M) < ®(G).

Recall that, a class § of groups is called a

formation if it is closed under homomorphic image
and subdirect product and every group G has a

smallest normal subgroup (called § -residual) with
quotient is in § . A formation § is said to be satu-
rated if it contains every group G with
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G/®(G) € §. A class of groups § is said to be S -
closed if every subgroup of G belongs to § when-
ever Ge§. We say a subgroup H of G is §-
supplemented in G if G has a subgroup T e$§
such that G = HT . In this case, T is said to be an
§ -supplement of H in G . In particular, if § is the
class of all supersoluble groups ( p-supersoluble

groups), then an § -supplement is said to be a super-
soluble supplement (a p -supersoluble supplement).
We use i to denote the formation of all supersolu-
ble groups. The following Lemma is obvious.

Lemma 1.6. Let § be a formation of groups.
Suppose that a subgroup H of G has an § -
supplement in G. Then:

(1) If N<G, then HN/N has an § -supplement

in G/N.

Q)If HSK <G and § is S -closed, then H
has an § -supplement in K.

Lemma 1.7 [14, Lemma 2.3]. Let § be a satu-
rated formation containing all supersoluble groups
and G a group with a normal subgroup E such
that G/IE € § . If E is cyclic, then G €'§.

Lemma 1.8 [15, Theorem 3.1]. Let § be a
saturated formation contained 3\ and G has a
soluble normal subgroup H such that G/H € §. If
for any maximal subgroup M of G, -either
F(HYXM or F(HYNnM is a maximal subgroup
of F(H), then Ge€§. The converse also holds, in

the case where § = L.

Lemma 1.9 [10, Theorem 3.2]. Let G be a
soluble group. If every maximal subgroup of every
non-cyclic Sylow subgroup of G having no super-
soluble supplement in G is s-c-permutably em-
bedded in G, then G is supersoluble.

Recall that a subgroup H of G is said to be a
2 -maximal subgroup of G if H is a maximal sub-
group of some maximal subgroup M of G.

2 Main results

Theorem 2.1. Let § be a saturated formation
containing 4 and G a group. Then G €§ if and
only if G has a soluble normal subgroup H such
that G/H €°§ and every maximal subgroup of every
non-cyclic Sylow subgroup of H having no super-
soluble supplement in G is s-c-permutably em-
bedded in G .

Proof. The necessity is obvious. We only need
to prove the sufficiency. Suppose that the assertion
is fasle and let (G,H) be a counterexample with
|G || H | is minimal. Then:

(1) G/R €5, where R is an arbitrary minimal
normal subgroup of G.
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Obviously,

(G/R)/(HR/R) = G/HR = (G/H)/(HR/H) e §
and HR/R=H/(HNR) is soluble. Let P/R be a
non-cyclic Sylow p -subgroup of HR/R, where p
is any prime divisor of | HR/R|, and M/R a maxi-
mal subgroup of P/R . If P, is a Sylow p -subgroup
of PN H , then by Lemma 1.2, P, is a Sylow p-
subgroup of H such that L=MNHANP, is a
maximal subgroup of P and M = LR . Clearly, P,
is non-cyclic. By hypothesis, either L is s-c-
permutably embedded in G or L has a supersoluble
supplement in G. By Lemma 1.1 and Lemma 1.6,
either M/R=LR/R is s-c-permutably embedded
in G or M/R=LR/R has a supersoluble supple-
ment in G. By the choice of G, G/Re§.

(2) G has a unique minimal normal subgroup
N, G=[N]M, where M is a maximal subgroup of

G, and N=0,(G)=F(G)=C,;(N) for some
prime p.

Since § is a saturated formation, by (1), G
has a unique minimal normal subgroup N and
®(G) =1. Hence, there exists a maximal subgroup
M of G suchthat G=[N]M. Since H is soluble,
N is an elementary abelian p-group for some
prime p. Clearly, N <0,(G) < F(G)<C,(N). Let
C =C;(N). Itis easy to see that C "M <G. Hence
C=CnNnNM =N(CnM)=N. Thus (2) holds.

(3) Nis a non-cyclic Sylow p-subgroup of H.

By Lemma 1.1, Lemma 1.6 and Lemma 1.9,

we know that H is supersoluble. By the choice of
G, H<G. Let g be the largest prime divisor of

|H | and Qe Syl (H). Then Q =0, (H)<G. Since
N is the unique minimal normal subgroup of G,
q=p. Hence, by (2), we see that
Nc0=0,(H)c0,(G)=N. By (1) and Lemma
1.7, we see that N is not cyclic. Thus (3) holds.

(4) Final contradiction.
Let G, be a Sylow p-subgroup of G. Since

NZ ®(G), N @(G,) by Lemma 1.5. So there exists
a maximal subgroup A of G, such that NZ A.
Clearly, N, = F, NN is a maximal subgroup of N.
If N, has a supersoluble supplement in G, then

there exists a supersoluble subgroup 7 of G such
that G=NT. It is weasy to see that
NNT <INT =G..Hence NNnT=1or NnT =N.
If NnT=N, then G=N,T =T is supersoluble, a
contradiction. If NnT' =1, then N =N,, which
is impossible. Hence we assume that N, is
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s - ¢ -permutably embedded in G, that is, there ex-
ists an s -conditionally permutable subgroup A of
G such that N, is a Sylow p-subgroup of 4. In
this case, for every ¢ € 7(G) and ¢ # p, there ex-
ists a Sylow g¢-subgroup Q of G such that

AQ=04. Then N,=NnP =NnAQ JAQ and
consequently Q< N;(N,). On the other hand,
N, =NnR<G,. Thus, N,<G. It follows that

NNP =1andso |N|=p. Then by (1) and Lemma

1.7, we obtain that G €§. This contradiction com-
pletes the proof.

Theorem 2.2. Let § be a saturated formation
containing Y and G a group. Then G €§ if and
only if G has a soluble normal subgroup H such
that G/H €°§ and every maximal subgroup of every
non-cyclic Sylow subgroup of F(H) having no su-
persoluble supplement in G is s-c-permutably
embedded in G .

Proof. The necessity is obvious. We only need
to prove the sufficiency. Suppose that the assertion
is fasle and let (G,H) be a counterexample with

|G || H | is minimal.

Let M be a maximal subgroup of G. If
F(H)g M , then there exists a prime p dividing
| F(G)| suchthat O,(H) & M. Thus G=0,(H)M.
It is clear that ®(G) N F(H) =1. If not, we choose a

minimal normal subgroup R of G contained in
O(G)NF(H), then (G/R,H/R) satisfies the hy-

pothesis. The minimal choice of (G,H) implies that
G/R € §. Then, since § is a saturated formation, we
have that G €, a contradiction. By Lemma 1.5,
©(0,(H)) c ®(G)NF(H). Hence ®(0,(H))=1.
It follows from [2, Theorem 1.8.17] that O,(H) is
an abelian p-group and consequently O (H)NM <G.
If |O,(H)|=p, then |F(H): F(H)NM[HG:M|=p.
Hence by Lemma 1.8, G €. This contradiction
shows that O,(H) is a non-cyclic Sylow p -sub-
group of F(H). Let M, be a Sylow p -subgroup of
M. Then G,=0,(H)M, is a Sylow p -subgroup
of G. Let £ be a maximal subgroup of G, with
M,ck and B =RNO,(H). Then R=RN0O,(H)M, =
=(BNO,(H)M,=BM, and BENM,=0,(H)NM,,.
Hence |O,(H): B |5 0,(H)M, : PM, |=/G, : R = p,
that is, P, is a maximal subgroup of O,(H). Since
O,(H)nM 2G, P(O,(H)nM) is a subgroup of
O,(H). By the maximality of 7, in O,(H), we
know that B(O,(H)nM)=E or B(O,(H)nM)=0,(H).
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If B(O,(H)nM)=0,(H), then G=0,(H)M =M.
Since, obviously, O,(H)nM =P,nM, O,(H)=P,
a contradiction. Hence P,(O,(H)nM)=P,. It fol-
lows that O,(H)nM c P,. Since O,(H)nM <G,
O,(H)nM < (B);. If (B), £M, then G=(B) M=
=PM and O,(H)=PR(0,(H)nM)=P,, a con-
tradiction. Hence, (), <M and (B),=0,(H)NM.

Suppose that P, has a supersoluble supplement
N in G, then G=BN=0O,(H)N. If O,(H)nN<M,
then O,(H)NN <M nO,(H)=(P); <P. There-
fore, O,(H)=P,(0,(H)NN)=P,, a contradiction.
It follows that O,(H)"\N £ M.

Since O,(H)NN <G and M is maximal in
G, we have that G=(0,(H)nN)M. By the
modular law, N =(O,(H)NN)(M N N). It follows
that G=0,(H)(M NN). By the modular law again,
M=(B);(MNN). Hence, G=M(O,(H)NN)=MN =
=(H)N.

If M NN is not maximal in N, then there ex-
ists a maximal subgroup N, of N such that
MNN<N,. Let L=(P).N,. Since (P); <M, it
follows that (B), "N =(B), (NNM)<(B), "N, <
<(P);NN. Hence, (P);NN=({PL);NN,=
=(B), n(M AN). Since G=(B),N, L=(P),N,,
M =(P).,(MN), we have that M <L<G, a
contradiction. Therefore, M NN is a maximal sub-
group of N. Since N is supersoluble, it follows that
|F(H):F(H)NM |=|G:M|=|N:MNl|=p, a
prime. This implies that F(H)NM is a maximal

subgroup of F(H). Then by Lemma 1.8, we obtain
that G € §, a contradiction.

Hence, by hypothesis, P, is s -c-permutably
embedded in G. Then there exists an s-conditionally
permutable subgroup 4 of G such that P, is a Sy-

low p-subgroup of 4. Now, for every g € #(G) and
q # p, there exists a Sylow ¢ -subgroup QO of G
such that AQ<G. Because P, =400, (H)< 40,
we have that O < N,(P). On the other hand, since
P,=FnNO,(H)R, and O,(H) is abelian,

G, =0,(H)M, = O,(H)R, < N,(B).
Thus, P, <G. This implies that B =(B); <M and
so O,(H)nM =P, "M = P,. 1t follows that

| F(H): FH)NMH G: M= O,(H):0,(H)nM |= p.

This indicates that F(H)NM is a maximal sub-
group of F(H). By Lemma 1.8 again, we obtain
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that Ge§. The final contradiction completes the

proof.
Theorem 2.3. A group G is p-supersoluble if

and only if G has a normal p -soluble subgroup H
such that G/H is p -supersoluble and every maxi-
mal subgroup of every Sylow p-subgroup of H
having no p -supersoluble supplement in G is s -

¢ -permutably embedded in G.

Proof. The necessity is obvious. We only need
to prove the sufficiency. Suppose that the assertion
is fasle and let (G,H) be a counterexample with

|G || H| is minimal. We proceed the proof via the

following steps:
(1) If R is a minimal normal subgroup of G,
then G/R is p -supersoluble.

Clearly, (G/R)/(HR/R)=G/HR =(G/H)/(HR/H)
is p-supersoluble and HR/R=H/(HNR) is p-
soluble. Let P/R be a Sylow p -subgroup of HR/R
and M/R a maximal subgroup of P/R. If P is a
Sylow p -subgroup of PN H, then by Lemma 1.2,
P, is a Sylow p-subgroup of H such that
L=MnHAMNP, is a maximal subgroup of P, and

M =LR. By hypothesis, either L is s-c-
permutably embedded in G or L has a p-

supersoluble supplement in G. By Lemma 1.1 and
Lemma 1.6, we see that either M/R=LR/R is s-c-
permutably embedded in G or M/R=LR/R has a
p -supersoluble supplement in G. By the choice of

(G,H), G/R is p-supersoluble.

(2) 0,(G)=1 and G has a unique minimal
normal subgroup N such that
N=Cy;(N)=0,(G)®(G) and [N £ p.

In fact, if O, (G)=#1, then, by (1), G/O,(G)
is p-supersoluble. It follows that G is p -super-
soluble, a contradiction. Hence, O,(G)=1. Since
the class of all p -supersoluble groups is a saturated
formation, G has a unique minimal normal sub-
group N and N ¢ ©(G). Obviously,
N=C;(N)=0,(G). By (1) and Lemma 1.7,
| N |# p.

B)If H<D<AG and D<G, then D is p-

supersoluble.
It is clear that D/H 1is p -supersoluble and

(D,H) satisfies the hypothesis by Lemma 1.1 (4)
and Lemma 1.6. Hence, by the choice of (G,H), D
is p -supersoluble.

(4) Let H, be a Sylow p-subgroup of H .

Then 1# H , N andso H » is not normal in G.
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By hypothesis, obviously, H, #1. If H, =N,
then, by (2), [H,[>p. Since H,¢P(G) and
H,dG, H,¢®(G,) by Lemma 1.5, where G, is
a Sylow p -subgroup of G. Hence, there exists a
maximal subgroup B of G, suchthat H, & R. Let
E=H,NEF. Then E is a maximal subgroup of
H,. If E has a p-supersoluble supplement 7" in
G, then |G:T|<|E|. Since H,T=ET=G and
H, is an abelian minimal normal subgroup of G,
G=[H,]T. This implies that |G:T|=[H, > E|, a
contradiction. Hence E is s - c-permutably embed-
ded in G, that is, there exists an s-conditionally
permutable subgroup A4 of G such that £ is a Sy-
low p -subgroup of A . So for every ¢q € #(G) and
q # p, there exists a Sylow ¢ -subgroup Q of G
such that Q4=A4Q. Thus E=H,NF=
=H,nAQ < AQ. It follows that O <N, (E). Be-
sides, E = H,nF4G,. Therefore E <G. This
induces that £=1 and so | H, |= p, a contradiction.

Thus (4) holds.
(5) G=[N]IM , where M isa p-supersoluble

maximal subgroup of G such that p||M| and
0,(M)=1.

By (1) and (2), G has a p-supersoluble
maximal subgroup M such that G=[N]M. By [2,
Lemma 1.7.11], O,(G/C,;(N))=0,(G/N)=1. Hence
O,(M)=1. Assume that p {| M |. Then p does not
divide |G/N|. Since Nc H, H/N isa p'-group,
which contradicts (4).

(6) H=G.

Assume that H # G . Consider the subgroup
HNM. Since H=HNNM =NHnNM) and

N+#H, HnM=1. By (2) and (3), H is p-
supersoluble and O, (H)=1. It follows from [11,

Lemma 3.3] that H is supersoluble. This implies
that p is the largest prime divisor of | H| and so

the Sylow p-subgroup P of HNM is normal in
HnNM. Hence P char HNM <M. Since
O,(M)=1, P=1. It follows that N is a Sylow p-
subgroup of H, which contradicts (4).

(7) Every maximal subgroup of every Sylow
p-subgroup of G has a p-supersoluble supple-

ment in G.
Let G, be a Sylow p -subgroup of G and A

a maximal subgroup of G,. If N c B, then, by (5),
P, has a p-supersoluble supplement M in G. As-
sume that N¢F and B is s-c-permutably
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embedded in G. Then there exists an s-
conditionally permutable subgroup 4 of G such
that B be a Sylow p -subgroup of 4. By the same
discussion as in (4), we obtain that A <G and con-
sequently N c B, a contradiction.

(8) Final contradiction.
By (7) and [11, Theorem 3.4], we obtain that
G is p-supersoluble. This final contradiction com-

pletes the proof.
Theorem 2.4. Let p be the smallest prime di-

viding the order of a p -soluble group G and P a
Sylow p -subgroup of G. If every 2 -maximal sub-
group of P is s -c-permutably embedded in G and
G is A, -free, then G is p -nilpotent.

Proof. Suppose that the assertion is false and
let G be a counterexample of minimal order. We

proceed with our proof as follows:
(1) G/N is p -nilpotent, for every non-trivial nor-
mal subgroup N of G.

If some Sylow p -subgroup of G is contained
in N, then, obviously, G/N is p -nilpotent. Hence,

we may assume that N does not contain any Sylow
p-subgroup of G. Let PN/N be a Sylow p-

subgroup of G/N, where P is a Sylow p -subgroup
of G, and M,/N a 2 -maximal subgroup of PN/N.
It is easy to see that M, =PNNM,=(PNM,)N.
Let P =PnM, Since PnM,NnN=PnNN,
p’ = PN/N:M,/N|=| PN :(PNM,)N|=|P:P,|.

Hence P, is a 2-maximal subgroup of P and
M,=PN. By Lemma 1.1, M,/N=PN/N is
s - c-permutably embedded in G/N. This shows

that G/N satisfies the hypothesis. The minimal
choice of G implies that G/N is p -nilpotent.

(2) G has a unique minimal normal subgroup
H=C,(H) and ®(G)=1.

Since the class of all p -nilpotent groups is a
saturated formation, G has a unique minimal nor-
mal subgroup, say H, and ®(G)=1. Because G is
a p-soluble group, H isa p-group ora p'-group.
If H isa p'-group, then G is p -nilpotent. Hence
H is an elementary abelian p -group. Now, by the
similar argument as in the proof (2) of Theorem 2.1,
we can know that H = C,(H).

Q) |Hzp"

If |Hl=p, then G/H=G/C,(H) < Aut(H)
is a cyclic group of order p—1. Since p is the
smallest prime of |G|, G=C,i(H), that is,
H < Z(G). This induces that G is p -nilpotent, a

contradiction. Thus (3) holds.
(4) Final contradiction.
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By (2), we see that there exists a maximal sub-
group M of G such that G=[H]M. Let M, be a

Sylow p-subgroup of M. Then G,=M H is a
Sylow p -subgroup of G. By Lemma 1.3, we see
that |G, |2 p’. Let G, be a 2 -maximal subgroup of
G, with M, cG, and H =G,nH. Then
|H:H, |=|H:G,nHI|= HG,:G, |=| G, :G, |= P

Hence H, is a 2 -maximal subgroup of H. By hy-

pothesis, G, is s-c-permutably embedded in G.

Hence there exists an s-conditionally permutable
subgroup 4 of G such that G, is a Sylow p-

subgroup of 4. Let ¢ be an arbitrary prime divisor
of |G| with g=# p. Since 4 is s-conditionally
permutable in G, there exists a Sylow ¢ -subgroup
Q of G such that AQ=04. As H, is a 2 -maxi-
mal subgroup of H and H,=G,NHcCAONHCH,
we have that H, =4A0NH or AQNnH=H or
HcAQONHcH. If AQNH=H, then
Hc AQ andso G,=M H < AQ, which is clearly
impossible. If H, c AQNH c H, then AQNH is
a maximal subgroup of H. Let H,=4A0NH.
Since H,=A0NH<JAQ and H,<H,,
AQc N,(H,) and G,=GH<AH<N,(H,).
This implies that 4, <G. However, because H is

the minimal normal subgroup of G, we have that
H,=1. It follows that |H |=p, a contradiction.

Hence H, =A0NnH<A4Q. It follows that
AQc Ny(H;). On the other hand, since
H =G,nH<G, and H is an abelian group,
G,=G,Hc N;(H,). This shows that H, JG.

2

Consequently, H, =1 and so |H |=p~. It follows
that | Aut(H)|=(p+1)p(p—1)°. Since ¢>p and
G/H=G/C,(H) S Aut(H), q=p+1. This in-
duces that p=2, ¢=3. Let x be an element of
order 3. Thus [H ]<x> is a subgroup of G, which

contradicts the fact that G is 4, -free. The final con-
tradiction completes the proof.

Remark 2.4.1. In Theorem 2.4, we cannot omit
the assumption that G is A4, -free in general. For
example, G =4,. It is clear that every 2 -maximal
subgroup of the Sylow 2 -subgroups of G is the
identity subgroup and of course, is s - ¢ -permutably
embedded in G. But G is not 2-nilpotent.

Corollary 2.4.1. Let G be a soluble group.
Suppose that for each prime divisor p of |G| and
P e Syl (G), every 2-maximal subgroup of P is s-
c-permutably embedded in G and G is Ay-free, then
G is a Sylow tower group (see [2, p. 49]).
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Theorem 2.5. Let G be a group and N a
soluble normal subgroup of G such that G/N is a
Sylow tower group. If, for every prime p dividing
the order of N and P e Syl (N), every 2 -maximal
subgroup of P is s -c-permutably embedded in G
and G is A,-free, then G is a Sylow tower group.

Proof. By Lemma 1.1 (4) and Corollary 2.4.1,
we can see that N is a Sylow tower group by induc-

tion. Let » be the largest prime number in 7z(N)
and Re Syl (N). Then R char N<JG and so
R<G. By Lemma 1.1 (1) and induction, G/R is a
Sylow tower group. Let g be the largest prime divi-
sorof |G| and Q a Sylow ¢ -subgroup of G. Then
RO/R<AG/R and thereby RO <JG. If g =r, then,
obviously, G is a Sylow tower group by induction.
Hence, we assume that r < g .

Case 1. RO <G. In this case, RQ is a Sylow

tower group by Theorem 2.4 and induction. It fol-
lows that O S RQ and so O JG. Thus G is a Sy-

low tower group.

Case 2. G=RQ. Let L be a minimal normal
subgroup of G with Lc R. Then the quotient
group G/L (with respect to N/L) satisfies the hy-
pothesis. Hence, by induction, G/L is a Sylow
tower group. Since the class of all Sylow tower
groups is a saturated formation, L ¢ ®(G) and L is

the unique minimal normal subgroup of G which is
contained in R. Therefore, L=F(R)=R by
Lemma 1.4. In particular, R is an elementary abe-
lian group.

If R is a cyclic subgroup of order r, then
r<gq implies that G is r-nilpotent by [16,
(10.1.9)] and so G=RxQ. Hence G is a Sylow
tower group. Now assume that | R|>7". Let R, bea
2 -maximal subgroup of R. By hypothesis, R, is s -

¢ -permutably embedded in G. Hence there exists
an s -conditionally permutable subgroup 4 of G
such that R, is a Sylow r-subgroup of A. Then, for

some (), €Syl (G), we have AQ <G. Since
R =RNAQ <40, AQ < N;(R). This implies
that R < G. But, because R is the minimal normal
subgroup of G, we have that R =1 and so |R|=7".
Since Q < Aut(R) and | Aut(R)|=(r+1r(r-1)°,
g =3 and r=2, which contradicts the fact that G

is A, -free. The proof is completed.

3 Some applications of the results

Theorems 2.1-2.3 have many corollaries. We
state only some special cases of theorem which can
be found in the literature.

Theorem 2.1 immediately implies

IIpo6remvl uzuku, mamemamuru u mexnuxu, Ne 3 (4), 2010



S-C-permutably embedded subgroups of finite groups

Corollary 3.1 (Huang, Guo [9]). Let § be a
saturated formation containing all supersoluble
groups. A group G €§ if and only if there exists a
soluble normal subgroup H of G such that G/H € §
and every maximal subgroup of every non-cyclic
Sylow subgroup of H is s -conditionally permutable
in G.

Corollary 3.2 (Chen, Guo [10]). Let § be a
saturated formation containing all supersoluble
groups. A group G €S if and only if G has a solu-
ble normal subgroup H such that G/H €§ and
every maximal subgroup of every Sylow subgroup of
H is s-c-permutably embedded in G.

Recall that, let X be a non-empty subset of G.
Then a subgroup H of G is c-semipermutable ( X -
semipermutable) in G if there is a minimal supple-
ment 7 of H in G suchthat A is T -per-mutable
( X -permutable) with all subgroups of 7 (see [8],
[17]). Clearly, if a subgroup H of G of prime
power order is c¢-semipermutable (X -semi-
permutable) in G, then H is s-conditionally per-
mutable in G and consequently is s - ¢ -permutably
embedded in G. Hence we immediately have the
following corollary.

Corollary 3.3 (Hu, Guo [17]). Let § be a satu-
rated formation containing all supersoluble groups.
A group G e€'§ if and only if there exists a soluble
normal subgroup H of G such that G/H € § and
every maximal subgroup of every Sylow subgroup of
H is c-semipermutable in G.

From Theorem 2.3, we have

Corollary 3.4 (Zha, Guo, Li [18]). Let G be a
p -soluble group. Then G is p -supersoluble if and

only if G has a normal subgroup N such that G/N

is p-supersoluble and every maximal subgroup of
every Sylow p-subgroup of N having no p-super-
soluble supplement in G is s-conditionally permuta-
ble in G.

From Theorem 2.2, we obtain

Corollary 3.5 (Ramadan [19]). Let G be a
soluble group. If all maximal subgroups of the Sylow
subgroups of F(G) are normal in G, then G is
supersoluble.

Corollary 3.6 (Ramadan [19]). Let G be a
soluble group, and E a normal subgroup of G such
that G/E is supersoluble. If all maximal subgroups
of the Sylow subgroups of F(E) are normal in G,
then G is supersoluble.

Corollary 3.7 (Asaad, Ramadan, Shaalan [20]).
Suppose that G/H is supersoluble. If H is super-
soluble and all maximal subgroups of any Sylow
subgroup of F(H) are s -permutable in G, then G

is supersoluble.

Corollary 3.8 (Asaad [21]). Let § be a satu-
rated formation containing Y. Suppose that G is a
soluble group with a normal subgroup H such that
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G/H €§. If all maximal subgroups of all Sylow
subgroups of F(H) are s-permutable in G, then
Ge§.

Corollary 3.9 (Huang, Guo [9]). Let § be a
saturated formation containing all supersoluble
groups. A group G e§ if and only if there exists a
soluble normal subgroup H of G such that G/H € §
and every maximal subgroup of every non-cyclic
Sylow subgroup of F(H) is s -conditionally permu-
table in G.

Corollary 3.10 (Chen, Guo [10]). Let § be a
saturated formation containing all supersoluble
groups. A group G e€§ if and only if there exists a
soluble normal subgroup H of G such that
G/H e§ and every maximal subgroup of Sylow
subgroups F(H) is s-c-permutably embedded in G.

Corollary 3.11 (Hu, Guo [17]). Let § be a
saturated formation containing all supersoluble
groups. A group G e§ if and only if there exists a
soluble normal subgroup H of G such that
G/H e§ and every maximal subgroup of Sylow
subgroups F(H) is c-semipermutable in G.

Corollary 3.12 (Chen, Li [22]). 4 group G is
supersoluble if and only if there exists a soluble nor-
mal subgroup H of G such that G/H is super-
soluble and every maximal subgroup of every Sylow
subgroup of the Fitting subgroup F(H) of H is
F(H) -semipermutable in G.
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